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SIGNIFICANCE AND EXPLANATION

/ , ' -,,I -y,

--The singular parabolic equations treated eaetis erve as a model for filtra-

tion of fluid. in porous medial The function -, a-tt-ign-a, i serves

as the model situation for such problems and makes the equation singular.

Usually solutions of boundary value problems associated with such equations

are found in a global sense, i.e. they are characterized as equivalence classes

in certain Sobolev spaces. It is of interest to decide whether they may be

defined pointwise and whether they possess some local regularity such as

continuity.

In this paper we prove that global (weak) solutions are in fact continuous.

Moreover, we study under what circumstances their continuity can be extended up

to the boundary of the domain where the process takes place.

The responsibility for the wording and views expressed in this descriptive summary
lies with NUC, and not with the author of this report. ,
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CONTINUITY OF WEAK SOLUTIONS TO A GENERAL

POROUS MEDIA EQUATION

Emanuele DiBenedettot

1. Introduction

The aim of this paper is to extend the results I obtained in a previous work (10]

about the continuity of weak solutions of singular parabolic equations in divergence

form of the type

(1.1) -'t(U) - div a(xt,,u,V u) + b(x,t,u,V u) 0
Bt x x

in the sense of distributions over a domain Q in RN+l , N 2 1 . In 1101 I consid-

ered the case of B being a coercive, maximal monotone grp.ph in Rx R with a jump at

the origin, namely

0 B1(s) , s>

(1.2) B(s) -V,0] , a - 0

2 (s)-V, 
s < 0

where Pi , i - 1 , 2 are increasing coercive Lipschitzian functions in I , and v

is a given positive constant. The situation was typical of diffusion processes with

a change of phase. Here we consider the case of B continuous, coercive, monotone

in I, such that '(s) "blows-up" at a = 0 . The model example of B I have

in mind is

t Mathematics Department of Indiana University, Bloomington, Indiana 47405.

Sponsored by the United States Army under Contract No. DAAG29-80-C-O041.
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(1.3) i(s) - s~" sign a , m > 1

which occurs in filtration of gases in porous media when the flow obeys a polytropic

law.

Our goal is to prove that weak solutions (in a sense to be made precise) of (1.1), for

B such as (1.3) are continuous.

* To our knowledge available, related regularity results essentially deal with non-

negative weak solutions of

(1.4) 0(u)t -Au 0 in V'(n

where nT is a cylindrical domain in I

For N ' 1 , R xR , the sharpest results are due to D. Aronson [1, 2. 3]

When B(.) is as in (1.3) he proves that weak solutions of (1.4) are locally Holder con-

tinuous with respect to the space variable, with optimal exponent m/m-1 . The time-

regularity is investigated in (13, 11.9].

For N > I and 0(-) as in (1.3), continuity and Holder continuity are due to

Caffarelli and Friedman [5, 6]. Their proof employs an interesting regularizing effect of

operators like in (1.4), on non-negative solutions, discovered by Aronson and Benilan [4].

For equations bearing lower order terms we mention an unpublished result of A.

Friedman, reported by L.A. Peletier in [15]: Non-negative weak-solutions of

(1.5) u - um-l -lul -

u aul u - -lu - u , m >1 , n> 0

are continuous in their domain of definition, provided that n k m

When the signum restriction on the solution is relaxed then the continuity of weak

solutions of

(u)t - Au = f(x,t) in 0'(ST)t T

has been proved by Caffarelli and Evans (71 in the case f(x,t) 5 0 , and P. Sacks [161,

if f 1 0 , under suitable assumptions on f

|



In the present paper no assumptions have been made concerning the signum of the solu-

tion, or the linearity of the operator involving s')ace-derivative. Also no relationship

has been imposed between the (possibly non-linear) a(x,t,U,V U) , b(x,t,UV u) and the

graph B

The method of proof closely reflects the one presented in [10]. One feature that

made possible the results of (10] was the observation that graphs B such as (1.2) are,

roughly speaking the sum of the identity graph and the maximal monotone extension of the

Heaviside function. This is not the case in the present situation, so that even remaining

in the same framework, a different analysis has to be produced to take in account the nature

of the singula'ity of B . This will result in a modulus of continuity for u which is

"worse" than the one derived in 1101.

Our work is organized as follows. Section 2 collects assumptions and statement of

results. Some preliminary material form section 3 whereas the proof of theorem 1 is the

object of sections 4, 5. Finally in section 6 we make some remarks about continuity of

the solution up to the boundary.

2. Assumptions and statement of results:

We start by introducing some notation and making precise the meaning of solution of

(1.1).

NLet f be a bounded domain in it of boundary af and for 0 -T <, let aT

Qx(O,TJ , 12(t) - fx{0, ST u anx (t) , r - ST u 9(0)
0<tST

For q , r Z 1 , we denote by L ( ) the Banach space of those measurable func-
q ,r T

tions mapping TlT,43, with norm defined by

Sulrl - j I[u[[q,n t) dt

where IuII. 0 (t) - lu(x,t)lj dx When q - r - 2 L2. 2( T) coincide. with theqf

Hilbert space L(fT) n hosa inner product . generates the norm ]l12
7l TI 2,2 '2,n T1,0

.22,T (T ) denote the Hilbert space with inner product

(uv) ) " (uv). ' +" 'i x.

2 T
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while W2 (
0T) denotes the Hilhert space with Inner product

2 T

(v)11 =(u'v) 1 a 0a

au au W2OT Qu a)
Here a tdenote generalized derivatives. With W2'I(0T)  we denote the space of

those elements in W1  (0T whose trace on anx (0,T] is zero.2 T
.1,0

Let V2 (QT) c W2 
0 T denote the Banach space with norm2 T 2 Tula

ess sup I, u',t)112,
Iu(y2 ) o 0!tT 1,

where

.1Q 1 .) 2,RT

Finally we let V2  (C V (n) denote the Banach space of functions such that the map

t'u(,t) is continuous with respect to 1"112, , and the norm 1 ( I that of

2

V2 (0 T) with the ess deleted.

Definition: By a weak solution of (1.1) we mean a function uc V2 ( T ) such that

(2.1) ON) *(x,T) dx It + ft (-(u) # + a(x'f'u'V U) "V

+ b(xr,u,V xu) 0dxd 0

for all *1 1'(nT) and almost all to , t such that 0 c t < t 9 T

The integrals in (2.1) are well defined modulo basic assumptions listed below. If

u C V2 (T )  is solution of a boundary value problem associated with (1.1), then it sat-

isfies (2.1), the boundary conditions being specified separately. By the local nature of

our arguments, we need not associate (1.1) with a particular boundary value problem.

Throughout the paper we will make the following assumptions, on 0 ,' (a1 , 82,...a N )

and b

(A1 ] Let 0(') be continuous, monotone increasing in R such that £(0) = 0 . With

S' (s) we denote the Dini numaber (whenever they exist),



B~)-B(s-h) s0

B' (s) -

rnm s - B(s) - 8(s+h)
l hO h , s<0

and on s B'(s) assume the following

(i) 0 < a ' 0(s) , V at R\{0} , where a0  is a given constant.

(ii) lrm inf B'(s) - +

(iii) There exists an interval -60, 601 around the origin such that B' (s) • B' (r)

for s e \[-80 ' 
6 0 and r e [-60 , 60O]\{0) and B'(-) is decreasing over

(0 , 601 and increasing over -60 , 0)

Remarks: i) We will use without mention the following consequence of assumption [A.]:

sup 0'(s) < al = max{8'(8 0) '(-6

ls1>6 00

(ii) Without loss of generality we might assume that

B'(s) > 1 , VsE (c ,60' ]\{0}

(iii) Notice that there is no symmetry requirement on BC') around the origin.

IA 2] ai b are reasurable on aT x RN+I 1 1 , 2,...,N

[A31 a(xt,u,P). p 2 C0(Iul) I1I2 - *0 (x,t) , V P
EEN

la1(x~t~u. )I S Io(I.u.) IPI + *(xt)

Ib(x,t,u,P)l s u(Iut) 12 +

where C 0) +]R +  is continuous and decreasing,

ii(-) :3 -I++ are continuous and increasing, i 0, 1

and the * ' i 0, 1 , 2 are non-negative and satisfy
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2

where the numbers I , r 1 are linked by the relations

+ I l- 0 1 K 1
r 2j1

, , r _,f , or

j (1,.) , r , i_ 1  , 0 0 "i <I for N11.

With (0n ) we denote a sequence of C(IR) functions such that Bn -B uniformly on com-

pacts of t\{0} , and satisfying, 0 (0) - 0 and

(2.2) 0 < B0 n (s) , Vs \{0) , n - 1,2....

Such a sequence can obviously be constructed.

[A4 ] Let u eV 2 (0T) be an essentially bounded weak solution of (1.1). We assume

that u can be constructed as the weak-V 2 (nT) limit of a sequence {un ) such

that

Il uun il., 'I. ...- n -

for some constant M , and each u c V0 ( T) is a weak-solution of (1.1), in the sensen 2 T
of identity (2.1) with 0(-) replaced by B (.) . Also since u e V 

1'0 (ST) , each u

will satisfy (2.1) for all intervals ItO,t] c (O,T]

Remark: Assumption [A4 1 is introduced to justify some of the calculations in what follows,

and is not restrictive in view of the available existence theory. (See references

in 110)). We can now state our main result.

Theorem 1: Let (A1j - (A3] hold. Then any essentially bounded weak solution of (1.1),

satisfying (A4], is continuous in ak T
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Remarks: (i) By the local nature of our arguments, in Theorem 1, the function u need

not be defined in a cylindrical domain, since we can always reduce to this

case by selecting in (2.1) test functions supported in cylindrical domains

contained in QT Hence for the purpose of proving Theorem 1 we need only

to assume that u is locally essentially bounded in Q that uc V (Q)
2,lbc

and satisfies [A4] locally.

(ii) Assumptions [A2 ] - [A3 ] are the same to those imposed in [14] to study the

Holder continuity of weak solutions of (1.1) with $(s) = a

N

(iii) If in [A3 ] there exist a e [i-p 21 such that

b(x,t,u,) uI) !I2 - + 2 (x,t)

then the uniform local essential boundedness of the approximations u nn

follows from the results of 114].

(iv) In [A3] for the space dimension N - b , one could also allow q -1 and

S- - , modulo some modifications in the proof of theorem 1. We omit the

lenghty modifications needed, since for N - 1 more precise regularity

results are available (even though for particular cases of (1.1)) [1 , 2,

11 , 131.

If (1.1) is associated with an initial boundary value problem of Dirichlet or Neumann

type, then under suitable assumptions on the boundary conditions and on the smoothness of

a , the continuity of u can be extended to the closure of QT" We refer to section

6 for the precise statement of these results.

We will prove the theorem in terms of the sequence {u n  introduced in (A 4 Namely

we will prove the following proposition.

Proposition 1: The sequence {un }  in [A4] Is equcontinuous in TU _ _ _ _ _ _ _ _ _ _ _ _



8

Also the proof of continuity of u in QT will be carried in terms of equicontinuity of

the sequence {u n in iT "

We remark that by virtue of the smoothness of Bn(.) , in view of the results of [14]

each u n(x,t) is Holder continuous in T with Holder constant and exponent dependent

on n

As in [10] the method of proof consists in modifying suitably the parabolic version of

DeGiorgi's estimates [8], as appearing in [14]. Roughly speaking we will construct for

every point (x0 , tO) 0 cT a family of nested shrinking cylinders where the oscillation of

(x,t) u (x,t) decreases according to the rules imposed by the operator in (1.1), but inn

a way which is independent of n e IN

The statement that a certain quantity or function depends upon the data, will mean that it

can be determined in terms of N'C 0 ('), UO i 1 (.) i 1. -0,i,2 , q,r, c1  Pa0 ,6 0

and the essential bound of lul over a

3. Preliminary material:

This section is devoted to the derivation of a system of integral inequalitieR which

will be the main tool in the proof of Theorem 1.

Let ucL q,r(T ) and kc J. Set (u-k) + i max{(u-k) ; 0} ; (u-k) - max{-(u-k) ; 0)qq(T)uV 2 ' (r T  ,tenas

It is obvious that (u-k ± c L ( ) and it is known that if uFV 1 ,0 (9 then also
q,r T 2 T

(u-k)± belong to V2 'O(1T) (14]).

N
With B(R) we denote a ball of radius R in JR. and if x -u(x) is defined in

B(R) we set

+ {xcB(R)lu(x) > Q Aks {xsB(R)Iu(x) < 
k

NN

Also let K N denote the measure of the surface of the unit ball in F
N
, so that

meas B(R) = iN R . The Steklov averagings uh  of ucL q,r(n ) are defined as

I~ [ t+h

u(x't)= u(x,i) dT 0 t 5 T h h > 0

: I u(') h-
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If u :2 then u hU i. tl,,- topology of Vl'O,0 V.- C > 0.1,h 2 T-s

An integration by Tjarts sho.7s (sce [14] for details) that if u E V2
n 2 T is

fies identity (2.1) with B replaced by B , then

(3.1) 3 ( dd

f t J( i[nu'] [(xun' x un] h x - . +[bcx"un'Vunj h~dd

01

for all *EW ' (Q ) and all intervals (t0t] c (0 T-h]

From now on {(x,t) u n(x,t)) will denote a sequence satisfying (3.1) and M is

a positive number such that

il T  M , n I , 2 , 3....

A system of integral inequalities will be derived for (xt)-+u (x,t) by making particularn

selections of the test functions * in (3.1) and letting h+0 . Next we construct test

functions in (3.1).

Let 01, *2 c (0,1) and consider the concentric balls B(R) and B(R-o I R) , and

the cylinders Q(R,X) E B(R) x [to, t 0 +X] , and Q(R-aR, -R 2 X ) - B(R - aIR) x

(t 0 2 A,t 0 +A] , 0 > .

Define cutoff functions in Q(R,X) as follows:

(a) c C. [Q(R,X)] , such that C(xt)I aB(R) = 0,vt [to , t+A] , (x t) = 0

VxcB(R) and (x,t) = 1 (x,t) eQ(R-O R, X -a 2 X) , t ? 0 (oR)

S -  
2 Xl

(b) CEC 0 (B(R)) such that (x) = 1 , xEB(R-a1 R) IV (°IR)-

For any cylinder Q(R,X) c 
0 T-h we make the following selection of test function in

(3.1),

±(B1  2
= ([B n(Un)]h) _ k)±

where kc IR satisfies

(3.2) Css sup (u - k)- _ 6
Q(R,A) n
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for some 6 >0 to be selected, and (X,t)-.i (x,t) Is chosen as in (a).

We treat the term involving -.(8l(U )]h in (3.1) as follows. (We drop the subscript

n for simplicity of notation)

2t -L± [800)]h [8 ([B(u)]) -k] C (X,T) dxdr
t0

C j c(X, T) -2- A1 (x, T) dx dT

where

A h ±f[S(u)]h [0-(Q) -k1d

Hence

'h Ahxt 2 (x,t) dx - Jt J A (X,r) r~ ( x r

so that letting h- 0 we obtain

Ih I a CI J. Cu-k) t 2 C2(x,t) dx - t A(X,r) _2 (x, r) dxd-r
h -1. 2Ito 0ina

In estimating the remaining terms in (3.1) we use assumptions [A1] - [A 3] (3.2) and routine

calculations.to obtain (see [10] for details)

(33) ft I faxr~~ u) x + b(X,r,u,V )x d

(C (M - C - 6 Pz1 M)f I Vx(u-k) +I 2 j(x,t) dx dT
t0

(C-1 P2 M +1)1 I~ k IV 12 -d

u0M + J [uk)tj, II x

rt 0 2n

+ j + + 2 ] C 2(x.T) X[(u-k) > 0] dx dr

Here X(E) denotes the characteristic function of the set E By H~lder'a inequality

I t I + 6O + 21] C2 (x,,r) x[(u-k) 0] dx dT !

on 0 2
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Since -+ 1 * the numbers
q 2q 1

q-1

satisfy the relationship

(3.4) 1 + N
r 2q 4'

and their admissible range is

q N-2] re 12,-n) for N Z 3

(3.5) qc (2,-) r (2,-) for N - 2

qe (2,-) , r (4,-) for N - I.

With this notation we have
12

J 5 max{l,61 +i + f2 + (lT ,n T f o d

co (2)

On the right-hau
, side of (3.3) we select c = and

where 60  is the number in [AI] . Therefore collecting all the previous estimates we

obtain the inequalities

(3.7) aolI(u-k)- tC11 (t) + CO(M) i J vx (u-k)=l 22

t +A I  2
r t(u-k -+  (1Vx 412 + I) dxdr

t0 f
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+ 0 tmeas A+,R(T)1 dT

+ y J Jj_ (xC) (x,r) dxdr , V tC [to, to+ A
0

where y is a constant depending only upon the data. We stress the fact that the choice

of c 6 and y is independent of n

The inequalities above are valid for every cylinder Q(R,A) c fiT and every k e ]R

satisfying (3.2) with the choice (3.6) of the parameter 6 .

A change of variable in the integral defining A (x,t) gives

(3.8) A (x,t) n f -  n 1'(k+ri)dn

Therefore

A (Xt) < B n(M)(un-k)± s max(B(M) , (-M)}(u n-k)±

As a consequence, recalling the construction of (x,t)- C(x,t) . and suitably rede-

fining the constant y , we have the inequalities

2 -2 2

(3.9) I(u -k)- foR) + (G2 2,Q(gX)
V2  B(Ro 1 R) (tO+ 2X,t0+X)]

+ Y 0 mea (T d + Y(o2A) -k)- d, d,
jjEiqR (u-kn~ d't 0  (K, X)

nt±

where A,R (t) {x B(R) l(un -k)-(x,t) . 01

Inequalities (3.9) are valid for every kc NR , satisfying (3.2), every cylinder

Q(R,)) c n T and every 01 I a2 c (0,1) . The constant N does not depend upon n .

Suppose now that (3.7) are written for the functions (u n-k)+ for k > 0 , then

A(x,t) in (3.8) can be estimated as follows.

1 ( 2-k) + 2  +2
A (x,t) S sup n(s)(un sup n'(s)(u -k)

9s2k 2n

Therefore by redefining the constant y , (3.7) imply
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+2

(3.10) (Unn-k) 2 l'o
V2  [P(R - c R) x (t0"2 X tO+ A)]

p V(M ( R)-2 (aX) 1 k+I 2

.5y sup 1'(s)[(o1R)-
2 + (o2  -Iuln-k)l I2Q(RX)sak

+r
+:-: ftoA [meS nk (T)]qd T

Inequalities (3.10) are valid for all k > 0 satisfying (3.2), all cylinder

Q(RX) c QT  and all a, 02 E(0,1) . The constant y does not depend upon n

An analogous argument can be produced for the functions (un -k) , k < 0 . It yields

inequalities like (3.10), to which we will refer to as (3.10)- . All the subsequent argu-

ments will be carried over cylinders of the form Q(R , 6R 2 ) E B(R) x [t o 0, t0 + 0
2 ] , > 0

Lemma 3.1: Let x -C(x) be a cutoff function chosen as in (b). Then there exists a con-

stant C(e) depending upon the data, but not upon n , such that

I jVUn 2(x)dxdT S C(6) " RN

2 01 n 2 NR
Q(ROR ) 1

XBl(o(u A1
Proof: In (3.1) select the test function n(xt) = e h 2(x) , •0 to

be chosen.

Routine calculations and limiting processes as h-O yield the result. Similar esti-

mates in an analogous situation have been carried on in [101 to which we refer for details.

Lemma 3.2: Let ke 3 t sup 2 (n(Un )-k) +  and 0 < n < p . Set
Q(R,9R 2  

n

(en(Un)) In+ += maxt n(u ) - k)) + n[ u-n(un) k)+ + n

Then there e::ists a constant C(O) independent of n , such that for all

t f [t o , t0 + e R2

J 2 r 2,n (x,t) dx S On (X'to) dx +

B(R-C R) B )

.. .. . . " .. ... . . . . O m .. . . . . I I I 1
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+ (a) 0l+ tn 1 + ~ N 2 1
31I 2 - 1 1)- II[ s):- (1)

Remark: For simplicity of notation we will employ the same symbol 0n for n (x.t) and

(B (u)) In what follows wn will mean - -*n(v)
a t nl av *n~

Proof: In (2.1) we select C 2 2(ha
nh

n -hin I ( (uM ++

It in apparent that Ot W 29iT) and that

2 2
2 (2+

The first term gives

t i L (a (u )) (02 ) C 2(x) dxdT 2 n~h ) 2
(x)dx

t Q n h nh oth( W dx

and letting h-0 , for all te lt o , t0+6 a , we have

ft 2 2 2 (x,) C
2 (x) dx It

0t faao0n( )h( th r xdT #

In order to treat the other terms we first let h*O and estimate the integral so obtained

In the following manner, (we drop the subscript n for simplicity).

((XTU.V x u) 2(1+ )( ,') 2'(u) V u C(2 x)

J 0  n~

4 (zx,,uV u) (* ) I x) 9 ; x) ) d x dt

ft 02 IU

- 2 ft J 0 0x,)(1*)(*,') 2 0'(u) C 2 (x) dxdt
tot o

- 0 f 0J ) IMv9 x u *' M CW 7 c) I dxdi

,/O to n



-4 C ~ W~.)~ ! dx dT
it 0i12 c (M1 - C ' itx 2? u12 EdxdI x . ()

"o 0

- 2 I 1 ( 0 (Xr)(l+*)(*')
2 0'(u) C2 (x))dxdT

t0a

- S IV C dxdt

0 t 0 a

-2 J 1 2 (1')2 C2 (x) # dxdT - 2 J IV C12 dx dT
t 0 1 1o I f

For the lover order terms we have

b(x.Ttu.V ru)102)' C 2W dx2d

S (M) I V xu 1 )' 2 (x) dxdT

t0a

+ I 1 ( (N. .1 2 x) dx dT
t o0

SCit (1+*)(*') B'(u) C 2(x)dxdT
tn  .

* 'I ~ *~ J Ir ul 2 C2(x) dxdt

* 2 I 2(x) , C 2 (x) dxdT.
to0

Collecting the ehtimatep above gives

(3.11) J 2 (x,t)¢2(x) dx + 21C 0 (1() -I t I (1+e)(,)20'(u)IVYUI22 (x) dxd, S

5(R) 0

* ~2 (x,t 0 )r 2  -' ma(;~) it f 2 2 d2 d02Xt)l)d. + 2 -xll;,; 1 0 W)2(1+01(u)10€0 +€ + 42 r.2(x) dx dr

5(R) t 0  0
)d d

+. (o~c) lmxJf4M0 Ct))2 * 2 4ji(CM) 2
) f / .fnvxl! 2 tx) iVcJid aT
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Now we observe that i'(x.t) vanishvs on the set ((mt) c Q(R,e R2) I u(x,t) < o- (k))

Moreover *' i and i, - tn - , so that

+) 2  , (u) !- (1+tn ) sup $'(s)2 >0n1 (k)

Using the definition of C(x) and lemma 3.1 we have

Jt  J {IYxUI 2 C2 (x) + IV C12 )dx dT !(6)(In i, c R

to 0 A0 1

By assumptions (A31 and Hoder's inequality

j ++ # 2 )  2(x) dxdT !

t0a2 2
2-(l+K) i(l+c) -1 N Nit

2(+q - i R ,

Finally choosing e - C0 (M) in (3.11) we obtain

J 2' (x, t) di !9 2 $(x,t) dx +

B(R-oIR) B(R)

+ 2 sup B(s) +l+in + - K RN

01 s*6n- (k)
n

where C(e) depends only upon the data but not upon n

Remarks: (i) If k ( 0 and v k eas sup (6n(un) -k) , then an analogous lemma holds for

Q8

n (x,t) - tn+ 0 <
n ~ ~ ~ ~ a.-6(8)-)

(ii) The proof shows that C(O) increases with a . In what follows we will use Lemm•

3.2 with 0 < a • 1 and C(9) replaced by C(l)

We conclude this section by stating a lemma which we will use as we proceed, and

whose proof can be found in (8, 14).
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i.e-ma 3.3 (AeDe:_Slori: Let u e W1(B (R)) and let k, be real numbers such that I. > k.

Then

( D R N+1 Vu dx131)(-~esA,R < WD a(B(R)\AkR ) JAk,R \A ,
R

where D is a constant depending only upon the dimension N

4. The main Proposition:

All the arguments in this section will be carried for n arbitrary but fixed. Let

(x0 , to ) efOT ' to > 0 and for R > 0 , Qt will denote the cylinder

2
Q (1 = { 'X- RI R) x (to -R ,t to

1

Let R0 < be so small that Q2 C , set

supu n ;u - inf u , n fixed,

Q2R 0  Q2Rn

and denote with w any positive number such that
+ -

2M a w Z oac u + P
Q2Rn n

For kc]R and 0'R:52R 0  we set

Q (k) ((xt)c Q. Iu (x,t) > k)

R R n

In order to simplify the symbolism, since ne 14 is fixed we will write A (t) instead
n±

of , (t) 

R i

Finally we let a denote the smallest positive integer such that

(4.1) 2M< 6 S k 22 a _6

where 6 , is the number introduced in (3.6) and 60  is the number in assumption IA1 l.

Proposition 4.1: Let w be any positive number such that

I I I I - I
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Q2Ro0 n

There exist nu.bers - 1 , h > 1 and a function w 3R+ R+ such that

s u is w (I- 2" ( ) ,

R*

provided that

NIC

w 2"  (2R0 ) 2

where , (2R0 ) and W is given by

v(y) s + 5 + A 1 ( y a + 1°&2 Is_ C9_0 _2

y 0

Here A, a , c C, , h are positive constants which depend uniquely upon the data and do not

depend upon nw nor R0

Without loss of generality we may assume that

(4.2) liii S U

If the reverse inequality holds the arguments are similar. Also we will assume that

(4.3) sac u ' V - V -
Q n 2 9-1

O2R0 2

and treat later the case v - S <
2s I5 

•

Notice that (4.2)- (4.3) imply that

(4.4) + W , A_ + P-1 k 0 --- >-A
2e  2s  2 s  2 •

Observe moreover that we may assume

(4.5) H S sup (u ( +2e - ' 2+1

Indeed if (4.5) is violated
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-in f U -j - + wqn s s+l
Q RO2 2

+

and adding sup u on the left-hand side and P on the right-hand side we obtainQR 
0 n

1esc un '5 to(1- - )

QR0

and Proposition 4.1 becomes trivial.

Proposition 4.1 will be a consequence of a series of lemmas which we state and prove

independently.

Lemma 4.1: There exists a number c0  depending only upon the data and independent of

n,.w and R , such that if

seas QR ( -+ .Sc l. N 1 I RN+2

0O 2 0 NO0

then either

NK

(1) H -ess sup (u - +2

or
- -+to

(ii) messQR0 (P- 2 - H) - 0 .

2

The proof of this lemma is based on inequalities (3.9) and is almost identical to the proof

of lemma 3.1 of [10).

Here we only remark that without loss of generality we might assume

b 1
0 2

where
21c

b
N+2K 11

Suppose now that the assumptions of lemma 4.1 fail. Then since

2 s
2 2
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we have that

M +as Q+ G + - - W cW b K RN+2

0 2

To shorten the notation we set

b
O0 c o

Lemma 4.2: For every aE (0,8 O)  there exists It O - R2 , 2

0such that

1-0 N
measA^+w (r) < - RO0

2s

2 2
Proof: If not, for all Te [t 0 -R 0 , t 0 -aR6]

1-80

mesasA% W (r -O N 06

and

+ + to-OR
2  1-0

0s N N+2
R0  to-R2 0  0 N

00 2

We will choose

so
2

+ +

and observe that the previous lemma holds if is replaced by U - ,V p as.
2 2P

Lera 4.3: Consider the cylinder

t ' Ro--{Ix-x°l1 R°) 2t Rt]Q 2

Q0 {l-o cRlx[t0-ciR0 ,to]

There exists Po c IN dependent upon a (and hence w) such that if

NK

2

2PO

then
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m( R ) B ( u ( x t ) ) > B ( p ) - a I 1 - " N R O
In n n OP 21JN
92

fo: all t t It-R , t ]

Proof of Lemma 4.3: By monotonicity and coercivity of 8 ()

u >• --- ] - (u ) > B 
n( +  - ) "

8 n  ( +2

Now B C --)V B C ) - ! a - , therefore
n 2

[ (u ) > B n a) - a0  - ] c u > 1A+ -

so that by le.-ma 4.2, there exists C I t 0 - R 2 t 0- a R 2 such that

meassxa B(R) : n(un ) > Bn(
+ ) 0  2 s N

( (+ )  
CA) ]+

We use lemma 3.2 applied to the function (x,t)- (U) - (S (I +- a0 - )1 (x,t)

in the cylinder

To {Ix-xoj < R0 ) x IT, to ]QR

for =a 0 wk sup( s (u ) ( (V ) a -)] , and = a0 , P 
>  s + 2

2 2 2

Here to - R; 2  T : to - R is the number claimed by lemma 4.2.

We have

2 2
(4.6) f in +s0-2 (Un) -(,n0( d-

a 13 (-[ u ) (B (U+) -a-s] + w]xtx
B(R 0 - 1 R0 ) 0 2 s n n n O 2s 02

+ 2 0n 2

in + z + 02 p ,T

a u (
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, p '(s) s, Ro

(1 + n 2 ps) (S K 2 _1 1O2P -a -A
s n [ n (U+ )-0 2]

We observe that 8 G - a O (j - , and that B'(S) e s I\{0}

n-i ,2 , 3,... Hence

sup '(s) < sup 8'(s)

1 U)_ ! ]n j + -

n 0 2 ] 2s

If U + - 6 >  
0  (6 is the number introduced in [A ]) then sup S'(a) ! aI

+ (a 0+ ? W 1 *

If I+ - < 0 then by virtue of (4.2) and (4.3) p - - - . Hence, since

A<4 6 5 6 0 ,in either case

2
s

sup O'(s) ! (-)

2
s
a

N<

Let P0 > p to be chosen, then if l-- R 2, the last tern in (4.6) can be majorized by

2(1+ax) 2
3  N , p +2P0 (P-S) N

0'( 2 In 2
P - 

K RO p z 
>  + 2.

s 0 °1

We estimate the remaining terms in (4.6) as follows.

in+ + (x,) dx 5 by Lemma 4.2!

B(R) 0 2 8 - nCUn) n a 2 + 02

2 (1-80  
td

5 (In 2
p - s ) \ R N- N o

For the left-hand side of (4.6) we have

n 
2  [- --u n -2 ( x , t ) d x

B(R-OlR) 0 a n [nCn
) -(n~

t +  
0a p")

1 2 2
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Zn + 0 2 a (x,t) dx0o -I(u) (V + -CI ; +*

+ +B(R-OlR)n[ [n (u n)> n(G )- a 0

2

z (in 2 P
- s- ) meas B + (t)

n(pa )-a o-,R-a R

where

+

B + (t) - {xe B(R) Bn(u(xt)) > k}

Combining the previous estimates in (4.6) we see that for all t E[ , t0  we have

(4.7) measB (t)
( v ) -ao2W- 0 1 0

n 2 ,Ro-10

Pn 2 1__0) N 2C (1-I0) 2'-r + __2__i_ ' ( K N

n 2 P-s- 1 x N ol n2 (p-s-i) 2

Now

meas B+ (t) < meas B+ (t)

- + )-a 10

+ meas{B(R)\B(R 0 -oR O  _ 5 eas + (t) + N a N RN
0n1) - - 0 - 0R 0

2

Therefore from estimate (4.7) we obtain

+ 2 C N
meas B (t) !< ) + N 1- N(+ R+ (p-sKl) Nn(Ij ) -aO -,R 0 °

where we have set in (4.7).

2C (1+a
2 )

.0 Zn 2

This inequality holds for all a, c (0,1) , all p > s + 2 and all t , to]

Select
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' 2

and P0 e IN so large that

C .- A ) 3 2 and

02 (poS-l) 
2  28 80

/ 2
°I Pl) I

to obtain

meas t) C M ! 1 R0  2

n ( + 
A- 

N 0

2

for all te (to R0  , tO ] • The lemma is proved.

Remarks: (i) It is easily seen that a suitable choice of p0  is

(4.8) PO = s + b 6 8
(c 0W b) 6 J

where

C2 2 5 N2 C

and lal denotes the largest integer contained in a

(ii) The constants Cl , C2  depend only upon the data and not upon n w nor R0

Lemma 4.4: There exists pe 'N , p,> p0  such that

meas + (t) R+ - 2T,,R02 K

for all t C [T ,t 0 ] .

The number p, depends upon w but not upon n nor R0
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Proof of LtTr,Pa 4.4: Let p,= p0 + r , r IN to be selected. We first establish the fol-

lowing fact. There exists r E N (dept-nding upon the data, and w but not upon n,

nor R0 ) such that

8V ()- 8 ( +  W ) a W
n 2p, 2p0

Indeed by virtue of the smoothness of 8
n

r rn

2 02

+ _ + + - W + WA >A WAwhere V .+r 5 C : V+ Now - - - - so that B'( ) s 8'') '(a
2~

2 PO2 0 2 s 2 sn2

To prove the claim it will suffice to select

r l + og 2  a 2L

Next we observe that since

n 2 p, n 2PO

n(Un) > a 2p *  [n(un) n n(+) -t0- 0

By monotonicity of n we have the inclusion
n

n - c En(un ) > an ( + ) - aO 2 '

therefore lemma 4.4 follows from lemma 4.3.

Remarks: (i) Taking in account (4.8) and the previous argument we have the following

expression for p,

(4.9) p- s + 3 + 2 V( + 0g2 2 J

s 2



26

(ii) The result of Lerna 4.4 still holds If we replace p, with any other number q > p,

Corollary 4.5: Let q be any po. itive integer larger than p, . Then

0 , 2  
Nmeas[B(R )A t -0 M+ WR02 N0

22

for all t et O - a R.0  t

Nnc

Lema 4.6: For any 1 > 0 there exists qOe INq 0 > p, , such that if - , then

measa ( b + _) 6  N+2
Q; 0 ( 2q0 <1 N O

Proof of Lemma 4.6: Apply inequality (3.12) to the function x-u n(x,t) in the ball

B(RO) x {t) for the levels

+ (a) + .
+ - - k -, qo > qt P,

2 to] 2n qaei con

where q has to be chosen. If we do this for all te It0 - R0 ,t0  and take in account

Corollary 4.5 we obtain the estimate

(w~i meas A+4 RO f IVXUI dx

2 q+1 0 0 N R (t)\A +
'0 '0

22Vte [t 0 -aR 0 ,t 0

Integrate both the sides of this inequality over [t0 -a R0 , , square and use

llolder's inequality on the right-hand side, to obtain

(4.10) (- Q + N [ 5

fo 0 IVxUni 2 dxd][0 meas[Ak ()\A R(T)jdT

i o -R 2  + .() . _mR2
0~~ ~ ~ 0 , RR0
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R ( (+2d

e_ niI~Iu - 0 0 ~ icas A+ (Q R 0\AtR(T2jdi

1,0 0

In order to estimate the y ,0( )-normn of (U - (U + -- )+ we use inequalities (3.10)
2 R0 n 2q

applied to the pair of cylinders Q Rr %R 0 Notice that in this connection

sup (U ( -!L))+ s < 6 and that

Q2R 0n 2 q 2 q

(a R)_
2 .4-2 (aR2- _I 

4 R-2

1 0(0 2R0 ~ 3 0

Moreover observe that since p + - - > 0 the use of (3.10) is justified. Inequalities

2 q
(3,10) now give

J(u (P _ .L)+j 0 Y sup Os)(+ 4 R-2

n 2'~R i aeas + (r)
2q Q2 Y[ t_.22

0 t~
0 0 2

2+ W 2 N 0(+10 -(+c-1
!5 Y -3 (-q) SUP B'(S) K R N+ y 2 q(+)KRN

2 S21+W NO N 0 NO0

where (3.4) has bieen used. Since p + > - - - we have

2 q 2 S 2 a 2 2a

Moreover by assurnption

w2

so that there exists a constant C 3 depending only upon the dimension N and the data,

such that

I(U(u :)) 0 a, w3 $() 2 ,R N
n 2 q V2 1, R 3 2a 2 q N 0

2 0

Carrying this in (4.10) and dividing by (.~-',gives
2 l
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(4.11) as Q0(i- 2 q i) S C4  4 N K6

80

whee [:~~~ eas A (,)\ALR(T] dj

f'to 2 1. A: R0 1

where C 4  
= 4 C 3 14DD] 2

We add inequalities (4.11) with respect to q * from p, to q0  1 1 , and obtain

(q- p
* ) meas Q0 ( +- 5 C 0 2 RN+2

0* R q 4 N

S RN+2 )2 03 (N 0

0

Where we used the fact that 0 8/2
0

Dividing the inequality by qo P * to prove the lemma we have only to choose q0  so

large that

C4 8,'(,'s

2(qO-P,) 6 3

We will select

(4.12) q0 = p* + 1 + 3 2

C.onsider now the pair of cylinders Q 0  and

Qa R0 R2

4i 0I- t_&4 t0

2
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For them we have the fol] .wng result

Lemima 4.7: There exists a number 6 > 0 depending upon a , N and the data, such that If

eas + - - N+2
meRs ( IJ2 < e K R

0 2 0

then either

(1) H - esa sup (an - (+- - + R or

R0 2q0

(ii) meas Q+ (u HW 1u--+i ,,-) 0

T 2

Proof of Lenma 4.7: The proof Is very similar to the proof of lemma 3.1 of [10]. We repro-

duce the main steps mainly to trace the dependence of q0 on 60 (and hence on w)

Set

R R0 - + 3R O

R - 2 i+2 m 2 .44

and consider the cylinders

a (I - I R. x [t _ al2 ,  to)
QR Ix -xl < R t0

m

I X - . 0 1 < RIx [to _ a 1 to

which satisfy the inclusions

a + CL
R+I m

We use inequalities (3.10) over and Q , for the functions (x,c) -* (u - k ) (x,t)
R n m

where

k (k1 +  H) H- , m 1,2 ....

2q0 0i2 J
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Since k kI > 0 the use of inequalities (3.10) is justified.

02-2 (+)2- -2 -1 2m+3 .W aet

Note that in this case (01 R ) 2  - 22(m+4) and (o2aR2) - 2 3 We have to

show that the numbers

( -k )+2 dxdT
S 2NYm 2N+2 f Un n
H0 H R0  R

Z R - R meas d

R0 0  0

tend to zero as n-m. Proceeding exactly as in lemma 3.1 of (101. and using inequalities

(3.10), we see that Y and Z satisfy the recursion inequalities

m m

y + l <  " N+ 2 + 1+ 1(3

[IIi E2 ( E( + .

where C is a constant depending only upon the data and not upon n , ,.,nor R . The

procedure shows that C can be taken to be so large thatbb

cow cb co(2".)b

2C 4C 4E

By lemma 5.7 of [14] page 96, there exists a number X > 0 such that if

1

l+c
Y1 < A ; ZI < A

then the recursion inequalities [I]-[II] imply that YM ZM+10 or m-.. From [14],

setting

d= in{- ;
N+2 h+.i

the number A is given by
N+2 1+1C* [] 2 25[N+2) ~ K 5.d

2i 2 d)
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2K1

Now since K = I i1 (0,1) and a W 1 above gives

d~4 2d 2 d . . .2

2N ' (2-w

0 CE O{ 0 v[
2

06

where we used the fact that G - and we have set

(4) [5(N+2) 5

00 a OZ)--- Kin 2 ;2 2 d

The lemma follows if

Y I Ro(N+2) mess Q0R0 (kl) 1 KN

l+IC

____ K b__0 K 00

From (4.12) and the remarks above it follows that the conclusion of lenma 4.7 holds true if

we choose

(4.13) qo P* + + [ 2 0 26 3'2b

0  0  J

b

We now recall the definition of p, and that 80 - CoW , and deduce that a suitable choice

of q is given by

r l-1+2b

q a+5+KNC4+C -af;2b+3) 2~ _log _2

0 . s 2 + [(2 2 0 bms:,.:6;2b+3) [ o2oj.

s.. .. . . .. . ili .. . il " = ll IIII IIII I II0
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Set

N C4 -rax{ 6 ; 2b+3}
A ( - - + C 2 ) 0

a bmax[6;2b+3)

c I + 2b

Then

-O a + 5 + [A ( ) + liog 2(

We remark that a ,A , a , c depend only upon the data and not upon n ,w nor R0

Proof of the Proposition: Set

=~ +, +o2  a

a(w) s + 5 + A [1 ) a - + log2  2)]

and suppose that
NK

(4.14) q w > w > (2R O)
2

2 sa 2 q0
+ 1  21T (

w )  0

Obviously either

2 i

1. as QWN+21 1 K N+2
S 0 2  N R0

or 2K

2. meas QO ( +- -) > co K RN+2

O 2 0 NO0

Case 1: By lemma 4.1 either

NKc

l.a. sup (u -R(o+-r-)- R o
n 2

R0 4!
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1.b. m-as Q (:j s - 0

2
T

If l.a occurs then

-inf u :5 -- + RJ 2! by (4.14) < - 0 -QR 0 ns0 2 T
(
W
) 

"

+

Adding sup u on the left-hand side and V + on the right-hand side we obtain

QR/

0CC < osc u -- 1

Q 2R n~ u
Ro 02

If 1.b occurs then

i n 5 1 - + + - -- + -

2

2

- w

OSC u 5 W(
QR°  2

2

Case 2: By Lemmas 4.2-4.6 in view of (4.14), the assumptions of lema 4.7 are verified,

It gives the following alternative. Either

Nic
+ - 2 + -

sup un s - 2 + R 0 S qo+1

2

or

essn supW +--- A -+ °e n 5qo q q+l qo+1

Q2 2Q 2
2 0

III2I. . . . I I
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Hence in either case

OSC U _

R0

2

Now to determine R, notice that by virtue of (4.14)

R 2 2+NKb

= c0 b (2R 
2 > 2sb-5 c (2R) 2

2 2.-4 2 00 0

sb-Setting C, minli 2  co  and

Nib
h- I +1

we have

V/ca C(2RO)h  R*

2
so that 0 (IX -X 0  < R,) X [t0 -R ,I to)

2

It follows that

(4.15) osc u :5 -
QR, )

Finally if (4.3) is false then (4.15) follows at once. The proposition is proved.

5. Proof of Theorem 1:

Proposition 4.1 holds true for any number w satisfying

osc u s w s 2M

Q2R0 
n

Wle stress the fact that the constants , a , b I c , A , s , h in proposition 4.1 do not depend

upon n I w nor R0 . Let (x0 ItO)E flT be fixed and select

Li
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=24 a osc un

1

Let 0R 0 < < be so small that Q2R c:f)T and
20

Nec

(5.1) (2R0 ) 2 2

Define sequences of positive real numbers {M } , {C1 } , R m ) as follows

-2 (Mm)H1 " 2M; -I"Me (1-2 ),m=-2,3....

R, - 2Ro 0 Rm . - Cm(R ) h ; m11 2,3 ....

Lemma 5.1: {M }310 ; (R m)10 and for all 1 ]N
Sm m

osc u s _
R n mii

Proof of Lemma 5.1: If M m > Ml >... >M 0 >0 then for all mI c I m. 1 5 MC

=1-2 - (  ] < I . Therefore Mm 5 MOCM , m 1, 2,... which implies Mm10 as

.-6- . A contradiction. The second statement is obvious.

In view of (5.1), proposition 4.1 implies that

osc u S M 2

Moreover

(R2 ) 2R
1 2) < f I  Lll2±J

Using the definition of M2  we have

I I 2
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2 2 2

Recalling the definition of b and s , it is immediate to see that

Neb

2 2M2 )

2 2(2----) <1!.

Nc T (M)

Moreover 2 therefore,
(M2 )

NK M22
(R2)-- M

2 Tj (M 2 )

Thus we have shown that the two inequalities

Ne T -r(M )
osc u M R 2 M1 2
QR1

imply the same inequalities for R2  and M2  The same argument shows that if

NK2 -2(M

osc u 5 M R -M 2

QR n m m m

m

then the same inequalities are valid for m + 1 . The lemma is proved.

We remark that the construction of the sequences {Mm I and {R m depends only uponm m

the data and is independent of the properties of the approximations u (x,t)n

Lemma 5.2: If K Is a compact contained in T ' then there exists a non-decreasing con-

tinuous function wK(.) H : R w WK(0) = 0 , such that
K 'K

V (xi ,ti I )K ,i =I, 2 and V nc N
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The fuiiction K- is &--rrined only in terms of the data and dist (K; 7)

the statement is a consequence of Lemma 5.1 and establishes theorem 1.

6. Co1ntinuity at_ r

In this section we state the assumptions that permit at least in some case, to extend

the interior continuity of the solution of (1.1) up to the parabolic boundary ofQT

[A] - Continuity at t - 0

Let u V 2 (QT ) be a weak solution of (1.1) satisfying the identity

(6.1) f 6(u(x,t)) O(x,t)dx + (-S(u) Ot + a(x,trlu,v u) V~ X
j0  x

+ b(x,r,u,V Xu) 4) dxd( fn 6(uO (x)) O(xO) dx

for all W 2 (PT) and a.e. 0 s t 5 T , where u 0 (x) 4E L 2(Q?) and is continuous over a

compact K c R~ with modulus of continuity w OK(* .on u(x,t) we assume the following

[A I u(x,t) satisfies [A 4 where the functions u n (x,t) satisfy also identify (6.1)

with a(-) replaced by B n* and all 0 s t !; T

Theorem 6.1: The functions (x,t) - u n(x,t) are equicontinuous on K' x [O,T3 , for ev-ery

corolary ' : Threit

Corllry_ Tereiss_ non-decreasing continuous function s -w(s) : 1R' ,u(O) = 0

such that

t1) - u(X 2 , t 2 ) !5 w Ix1 -x9 + I l- rt2~

for all (xi f t. E K' x [0,T) 1 1 2 , and all compacts K' c K

The function s -w-(s) depends uniquely upon the data and the modulus of continuity

of u 0 (x) over K

[B] _The case of Neumann boundary data

Consider (formally) the problem
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r B(u) -div a(x,t,U,Vxu) + b(x,t,u,Vx u) = 0

(6.2) (a(x,t,u,xxU) n ST(x,t) = g(x,t,u) on ST

u(x,0) = Uo(x) xef S , u0 (x) cL2(Q)

where nST(x,t) = (nx , nx 2,...,n ) denotes the outer unit normal to ST

On the boundary data g(x,t,u) we assume that

[G] g is continuous over S T x IR and admits an extension g(x,t , u(x,t)) over QT such

that

9-(x,t,u(x,t)) s Cx <,x t u x t~ l~~

By a weak solution of (6.2) we mean a fun-tion ucV 2 (QT) satisfying

(6.3) 8(u(x,t)) O(x,t) dx + f {-0(u) t + a(x,'UUV xU) Va O nx x

(t
+ b(x,T,U,Vxu)o) dxdi J0 g(x,T,u(x,T)) O(x,T) do

+ J (u0 (x)) ¢(x,O) dx

for all

(A2) We assume that u(x,t) can be constructed as the weak V2 (QT ) limit of a sequence of

u (xt) V I'0(Q )2 where u satisfy identity (6.3) with B(-) replaced by B ()
n 2 T n n

and u(x,t) replaced by u (x,t) . Moreover we assume that the sequence {u n isn n

equibounded, i.e.

lluni ',T M , n = 1 2 3,...

for a fixed positive number M

Theorem 6.2: Assume that 3Q is a C manifold in R , and suppose that [G] holds.

Then the sequence (u n Is equicontinuous in 2 x [Er,T] , for every > 0
n
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If in addition u0(x) Is continutous in f, then the sequence {u ) is equicontin-
0 n

uous in QT
T

Corollary: Let ucV 2 (PT) be a weak-solution of (6.3), let (A2) and [Gj hold, and assume

that aQ is a C manifold in R N-. Then for every T > 0 there exists w (.) : +R-]+

T

W (0) " 0 continuous and non-decreasing such that
T

Iu(x 1 ,t 1 ) - u(, t 2 ) I ! W (IXl-X 2 [ + it-t 2  )

V(xi , ti) S1 x [t,T]

If in addition uo(x) is continuous in 5 , then (x,t)-*u(x,t) is continuous over

with modulus of continuity 0 .) The function WT(.) can be determined in terms of

the data and the number T > 0 , whereas w0 (.) depends on the data and the modulus of

continuity of uo(X) on al

C] The case of homogeneous Dirichlet boundary data:

Let uV 2(fl ) be a weak solution of (1.1) which in addition satisfies

(6.4) ulS T " 0 , (x,t) CST a.e.t c [0,T]

in the sense of the traces over ST

On DQ assume the following

*

(P) 3 8 > 0 , R0 > 0 such that Yx0 c D and every ball B(R) centered at x0  , R R 0

meas[12 n B(R)] < (1-8O) meas B(R)

Moreover on u impose the assumption

(A' u(x,t) satisfies [A4 I where each of the u has zero trace on S

Theorem 6.3: Let (6.4), (P) and (A3) hold. Then the sequence {u } is equicontinuous in

C1 x [r,TJ , for all i > 0
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If in addition u(x,t) satisfies (6.1) for all c c W2  (QT) with u (x) continuous

over 5, then the sequence {u n} is equicontinuous in T

Corollary: Let u E V2 ( 2T) be a weak solution of (1.1) satisfying (6.4) and let (P) and

(A 3) hold. Then for every T > 0 there exists a continuous non-decreasing function w ()

w (0) = 0 such that

u t) - u(x2 1,2)I (x-x 2  + It1 -t2V)

for all (xi , t) E x [T.T] , i = 1 , 2

If in addition u(x,t) satisfies (6.1) for all * gW 'I(0T) with u0 (x) continuous

over Q , then (x,t)- u(x,t) in continuous over QT with modulus of continuity w (0)

The functions w (-) can be determined in terms of the data and the numbers T and

e of (P), whereas 0 (.) can be determined in terms of the data, 6 and the modulus of

continuity of u 0(x) over Q

Remark: In [10] for the case of homogeneous Dirichlet boundary data, we derived a modulus

of continuity of Holder type, for the solution u(x,t) , near the lateral boundary S .

This is not the case in the present situation because of the different nature of the graph

The proof of Theorems 6.1-6.3 can be given by using the same method of proof for the

analogous theorems 5.1-5.3 of [10], modulo some modifications due to the nature of 8

It should be pointed out that we were unable to give an answer for the case of non-

homogeneous and continuous Dirichlet boundary data.

7. Closing remarks

I. The fast diffusion case

Consider formally the equation

(7.1) u - div (x,t,u,V(u)) + b(x,t,u,V u) - 0
at X I
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in where s B(s) is a monotone function satisfying assumption [A1]. We assume

that the vector a(x,t,u,p) and the function b(x,t,u,p) satisfy the same growth conditions

stated in [A2] - [A3].

By a weak solution of (7.1) in 0T we mean a function u i V2(fMT), such that

IVxB(U)I e L2 (aT) , and satisfying

(7.2) f tvdxlt + f tf {-up + 'a(x,T,u,v S(u)) -V o + b(x,r,u,V u) P1dxdT - 0
J t 0 t00 t x x x

0 0 tO

for all v e W2 ' 1( T ) and almost all 0 < to < t < T.

Our motivation for considering such an equation is that (7.1) represents a quasi-linear

generalization of

(7.3) ut -A(dulmsign u) in V'( T)

for the case 0 < m <.

Equation (7.3) arises as a model for the spatial spread of biological population or in

some problems in plasma physics [17, 18).

Our purpose here is to point out that weak solutions of (7.1) are continuous in their

domain of definition, regardless of their signum. That is the continuity is a consequence

solely of the local smoothing effect of operators like in (7.1).

Let B n(), denote a sequence of C (R) functions such that B $ B uniformly on

compacts of ]R\{0} and satisfying (2.2).

(A4 ] Let u c V2( T) be an essentially bounded weak solution of (7.1). We assume that u

can be constructed as the weak V2(Q - limit of a sequence {un } such that

IN uII M < - , n 1,2,3 ....

for a positive constant M, and each u c Vl' 0o T ) is a weak solution of (7.1) in the sensen 2 T

of identity (7.2), with B') replaced by 
8 n().

Theorem 7.1: Let u E V2 (T) be a weak solution of (7.1) satisfying [A4 ]. Then (x,t) - u(x,t)

is continous in 9T'

iT
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We leave to the reader the task of stating facts about boundary regularity along the

lines of section 6.

The proof of Theorem 7 .1 can be given by straightforward modifications of the methods of

[10] and the ones in section 4 - 5 here.

We omit the details.

Corollary: Let u e V2 (flT) be a weak solution of

ut - A(dulm sign u) in V'( (T)

m> 0

Then (x,t) - u(x,t) e C( T ) .

II. On the Harnack inequality

Let u e V2(aT) be an essentially bounded non-negative weak solution of (1.1) with S()

replaced by the identity graph. Then it satisfies the Harnack inequality in the form introduced

by Moser [19]. To be specific let (x01t0) C QT and let R be so small that 91 of "vertex"

(x01t0) is contained in 0T" For any given set of numbers ai e (0,1), i - 1,2,3,4 one can

find a constant y - y(oi) such that

(7.4) inf u > y sup u

e 1C

where R+, R" are the cylinders

3 B(R - oR) x It0 - a 2 R2 , t 0 ] , 02 > a4 > 03

RB(R - aIR) x It0 - a3A2, To - 04R 2

Inequality (7.4) was proved by Moser [191 for the linear case and generalized by several

authors (20, 21] to the full quasi-linear situation. It turns out that (7.4) can be used to

prove the Holder continuity of essentially bounded weak solution of (1.1) with B(s) - s.

Here we want to give examples which show that essentially bounded non-negative weak

solutions of equations like (1.1) or (7.1) do not, in general, satisfy the Harnack inequality.
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(a) case n > Is

Consider the Cauchy problem
1

(u t - au- 0 in M'(mx )

(7.5) {a
UNA,) =(Cos X) -1 x C

Aronson [3] shows that (7.5) admits a global unique weak solution, which is classical for

0 < t < T - (m-l)/2m(m+l). Moreover setting x . (2j - 1) 2, j e S, we have

u(xit) - 0 , 0 < t < T

uNx't) > 0 , on m \ U (xj} x [0,T)
JE Z

Fix the point (x ,T-E), E > 0 and let R be so small that the cylinder QR of "vertex"

x t-), is contained in R x (O,T). Then for such a choice, inequality (7.4) fails to

be satisfied.

(Wi case 0 < m < 1:

Consider the Cauchy problem

rut . A(lulmaign u) in DI(Sex (0,T))

(7.6) 0

u0 _ 0 , t 0

u 0 e M)n .(e

If 0 < m < (N-2) +/N, then (7.6) admits a unique, bounded non negative solution, which

vanishes identically after a finite time T - T(m). Hence the Harnack inequality is not

satisfied.

If (N-2)+/K < m < 1, then (7.6) admits a unique, bounded solution which is strictly

positive over M N x (0,-). Consequently by the results of [20] - [211 it satisfies (7.4) ,

where y depends upon a local lower and upper bound on u.

For the stated existence-ur.iqueness results we refer to [15] and the extensive biblio-

graphy on it.
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III. Extensions

The methods used in sections 3 -5 might be modified to include graphs .3 having a

singularity of different nature with respect to the one considered here, provided the coercivity

is kept.

Discussing the results with Professor W. Ziemer, he pointed out that for example

like

O(s) - tnisi

could be handl.ed as weil.
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